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Photon-density waves in macroscopic and microscopic plane-parallel scattering samples

P. J. Peverly, R. E. Wagner, G. H. Rutherford, M. Marsalli,* Q. Su, and R. Grobe
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560

~Received 12 March 2001; published 1 March 2002!

We investigate the validity of the Boltzmann equation to predict the reflection and transmission coefficients
for an intensity modulated laser beam passing through a microscopic medium consisting of discrete scatterers.
For a one-dimensional model system we demonstrate that the Boltzmann equation works remarkably well for
small modulation frequencies, even to describe a medium comprised of only 10 scatterers. Discrepancies can
be found only if the modulation wavelength of the laser intensity is commensurate with the spacing between
the scatterers and if the medium is sufficiently ordered.
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I. INTRODUCTION

The Boltzmann equation is regarded as one of the m
fundamental descriptions in the science of particle trans
in highly scattering or collisional media@1#. It has found
applications in areas such as meteorology, oceanography
trophysics, statistical thermal physics, and medical optics
astrophysics or neutron physics the Boltzmann equa
models the average motion of real particles such as neut
or atoms@2,3#. In medical optics on the other hand, the Bo
zmann equation models the propagation of electromagn
radiation through highly scattering biological materials@4#.
In the latter case this approach is useful only if the physics
the carrier frequency is not so important, so that the radia
field can be characterized by its intensity only. Until fe
years ago, it was thought that typical wave phenomena, s
as diffraction, interference or refraction of electromagne
waves, could not be described by the probabilistic Bo
mann theory, in which light is modeled by ballistic quasip
ticles ~‘‘photons’’!.

About ten years ago@5#, it was shown for the first time
that if the intensity of a laser field is modulated periodica
a new wave form called a ‘‘photon-density wave’’@6,7# can
be generated inside a highly scattering medium. The co
ence of these intensity modulated waves decays on le
scales that can exceed the coherence length associated
the carrier frequency by several orders of magnitude@8#. In
fact these waves were experimentally shown to exhibit
usual wave properties including interference@9,10#, refrac-
tion @11,12#, diffraction @13#, and have shown potential fo
applications in other areas@14,15#.

Most of the theoretical work that followed the experime
tal breakthroughs made thus far in these investigations
based on analytical solutions in the diffusion limit of th
Boltzmann equation. However, for sufficiently high modu
tion frequencies, experiments have indicated the breakd
of the diffusion approximation, and one has to study the
solution of the Boltzmann equation. Fully analytical forms
the solution prove to be extremely difficult to obtain. Ev
numerical simulations of the full Boltzmann theory are at t

*Present address: Department of Mathematics, Illinois State U
versity, Normal, IL 61790-4520.
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forefront of computational physics, and numerical solutio
to the Maxwell equations in all three dimensions are ve
difficult @16,17#. In a recent work@18#, we have employed a
simple one-dimensional model system@19,20# to investigate
the breakdown of the diffusion approximation for larg
modulation frequencies.

In this study we will go one step further and explore t
validity of the Boltzmann theory for modulation frequenci
whose corresponding wavelength is so short that it is co
parable to the average spacing between the individual s
tering sites. The Boltzmann equation models the collect
of many individual scatterers by considering a very limit
number of the medium’s average properties. Only four
rameters characterize a scattering medium: the effective
dex of refraction that determines the propagation speedc in
the absence of the scattering, the scattering coefficientms
~inverse of the scattering length!, the absorption coefficien
ma , and the scattering phase functionp(V,V8). This func-
tion is the probability that an incoming particle associat
with solid angleV8 is scattered into directionV. In the
following we assume the carrier wavelength of the laser fi
to be several orders of magnitude smaller than the typ
interscatterer spacing.

We intend to address the following questions: How go
is a macroscopic Boltzmann theory with respect to model
a medium that consists of only, say, 100 scatterers? If
wavelength of the modulation of the incoming laser be
becomes comparable to the average spacing between
scattering sites, can the discreteness of the scatterers le
different collective responses of the medium than that
scribed by the Boltzmann theory? This question is import
to the understanding of the rather counterintuitive nonvan
ing transmission and zero reflection probability for a mediu
of finite length in the large-frequency limit predicted by th
Boltzmann equation@18,21#. Can one actually use properl
chosen modulation wavelengths to excite collective re
nances if the wavelength matches the average spacing
tween the scatterers? The last question is intriguing in a
logical tissue, e.g., where the modulation wavelength can
tuned to the average size of the microscopic scatterers~re-
gion of different indices of refraction! as well as their spac
ings.

In order to provide some insight into these questions
have used a simple one-dimensional~1D! model system.
i-
©2002 The American Physical Society08-1
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P. J. PEVERLYet al. PHYSICAL REVIEW E 65 031908
This spatially restricted model system has two major adv
tages: it contains most of the relevant aspects of a 3D
tem, the full Boltzmann equation can be solved analytica
and the required Monte Carlo simulations can be perform
numerically quite efficiently with sufficient accuracy. Add
tionally, this reduced dimensional model system can also
realized experimentally in optical fibers or other plan
parallel geometries as discussed in Refs.@1#, @18#, and@19#.

The present work is organized as follows. In Sec. II
discuss the Boltzmann equation and its analytical solution
Sec. III we describe the random-walk computations simu
ing the propagation of the photon-density waves throug
truly heterogeneous medium made up of individual scat
ers. In the fourth section we will compare the results o
tained from both methods and assess the range of applic
ity of the Boltzmann theory. We complete this work with
summary and a conclusion.

II. ANALYTICAL SOLUTION OF THE
ONE-DIMENSIONAL BOLTZMANN EQUATION

FOR THE MACROSCOPIC MEDIUM

The three-dimensional Boltzmann equation~radiative
transfer equation! @1# is given by

S 1

c

]

]t
1V•“ D I ~r ,V,t !5msE dV8p~V,V8!I ~r ,V8,t !

2~ms1ma!I ~r ,V,t !, ~2.1!

whereI (r ,V,t) represents the local radiation density prop
gating in theV direction, and the inverse of the scatterin
coefficientsms and ma describe the effective scattering an
absorption lengths. The parameterc is the speed of light in
the medium. The scattering phase functionp(V,V8) de-
scribes the conditional probability that a laser field in theV8
solid angle is scattered into theV direction. For simple me-
dia this phase function can be constructed from the ave
differential cross section of the single scatterer. Below
restrict this scattering phase function to only two directio
@18#

p~V,V8!5
1

4p
~12g!d~cosq11!1

1

4p
~11g!

3d~cosq21!, ~2.2!

where 21<g<1 is an adjustable parameter and whe
cosq[V•V8. The numerical anisotropy factorg is defined
as the average cosine of the scattering angleq, g
[*dV8p(V,V8)cosq. Due to its highly bidirectional char
acter, the backward and forward scattering are ov
represented at the expense of the scattering events in
directions that are underrepresented. However, this form s
plifies our theoretical analysis significantly.

With this bidirectional phase function, the Boltzman
equation can be expressed as a simple coupled set of
differential equations in spacex and timet
03190
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S 1

c

]

]t
1V

]

]xD I ~x,V,t !52Fms

2
~12g!1maG I ~x,V,t !

1ms

1

2
~12g!I ~x,2V,t !,

~2.3!

whereV561 represents the photon flux along the positi
and negativex direction. To simplify our notation we assum
from now on thatma50 and introduce the reduced scatteri
coefficientm asm[ms (12g)/2.

If we introduce the effective photon densityP(x,t)
[I (x,1,t)1I (x,2,t) and an effective current densit
J(x,t)[I (x,1,t)2I (x,2,t), we find the following equa-
tion for the two-component vectorB[(P,J) in Fourier
space defined by

P~x!5E
2`

`

dt eivtP~x,t !,

J~x!5E
2`

`

dt eivtJ~x,t !,~2x!

]

]x
B~x,v!5@ i ~v/c!s22mN#B~x,v!, ~2.4!

where s denotes the 232 matrix s[$(0,1),(1,0)% and N
[$(0,1),(0,0)% is the nilpotent matrix for which only the las
element in the upper row is nonzero.

We assume that the medium extends from 0,x,W and
that the index of refraction is the same inside and outside
medium. We can control the incoming photon flux at the l
interface of the medium and also the left going wave at
right edge of the medium

I ~x50,1,t !511cos~vt !,

I ~x5W,2,t !50, ~2.5!

where I (x50,1,t) represents the incoming laser fiel
whose intensity is modulated with frequencyv. Please note
that v should not be confused with the~much larger! carrier
frequency of the field, which is not included in the Bolt
mann description. Because of the linearity of the Boltzma
equation~2.4! we can find the solutions for a general pe
odic incoming field of the formI (x50,1,t)5exp(ivt) and
then superpose the corresponding complex solutions for
ac (vÞ0) and dc (v50) components. After a little bit of
algebra that involves diagonalizing and exponentiating
matrix @ i (v/c)s22mN# and matching the boundaries w
obtain as the solution inside the medium

P~x!5$C~x!@C~W!2S~W!„iv/c22m…#1S~x!~ iv/c

22m!@C~W!2S~W!iv/c#%/@C~W!2S~W!

3~ iv/c2m!#,

J~x!5$S~x!iv/c@C~W!2S~W!„iv/c22m…#1C~x!

3@C~W!2S~W!iv/c#%/@C~W!2S~W!

3~ iv/c2m!#, ~2.6!
8-2
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PHOTON-DENSITY WAVES IN MACROSCOPIC AND . . . PHYSICAL REVIEW E65 031908
where we have defined the complex functionsS(x)
[sinh(kx)/k with k[A@22ivm/c2(v/c)2# and C(x)
[cosh(kx). The eigenvaluek can be decomposed into it
real and imaginary parts according to

k52Fvc S v2

4c2 1m2D 1/2

2
v2

2c2G1/2

1 i Fvc S v2

4c2 1m2D 1/2

1
v2

2c2G1/2

,

which indicates an effective wavelength inside the medi
that can be much smaller than the wavelengthl52pc/v in
the absence of any scattering ifm.v/(2c).

The large- and small-frequency limit for Eq.~2.6! can be
read off immediately

lim
v→0

P~x!5@112m~W2x!#/@11mW#,

lim
v→`

P~x!5exp~ ivx/c!exp~2mx!. ~2.7!

Two observations are in order. First, it is interesting to n
that in one spatial dimension the dc component dec
linearly as a function of the distance. This compone
also shows an unexpected dependency on the total leng
the mediumW. The distancexdecay after which P(x) has
decayed by a factor of 1/e increases linearly with the tota
length of the medium,xdecay(v50)5@(e21)(11mW)
1emW#/@2me#, whereas in the large-frequency limit the a
component decays purely exponentially:xdecay(v→`)
51/m. On the other hand, the ratio of the photon probabi
at the right and left edges of the medium, 1/(112mW),
decreases with increasing medium length forv50 as
expected.

Second, the transmitted intensity does not vanish in
large-frequency limit. One could have~incorrectly! expected
that the smaller the wavelength of the intensity modulati
the ‘‘easier’’ it would be for a diffusive medium to attenua
these short wavelength oscillations. But the large-freque
limit approaches a form independent of the frequency.
will investigate if the Boltzmann equation holds for freque
cies so large that the modulation wavelength becomes c
parable to the average spacing between the scattering
In the same limit, the intensity distribution becomes indep
dent of the spatial length of the mediumW.

In the limit of an infinitely extended medium (W5`) we
obtain only reflected light

lim
W→`

P~x!5
k22m1 iv/c

k2m1 iv/c
ekx. ~2.8!

Sincek @defined below Eq.~2.6!# has a negative real par
P(x) in Eq. ~2.8! decays in space and approaches zero ax
→` as expected.

Using our boundary conditions forI (x50,1,t) and I (x
5W,2,t) we obtain the coefficient for the transmitted po
tion for the steady state asTB(v)[P(x5W) and RB(v)
03190
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[P(x50)21 for the reflected portion. Using the analytic
solution of Eq.~2.6! we obtain

RB~v!5S~W!m/@C~W!2S~W!~ iv/c2m!#,

TB~v!5@C~W!22 iv/cS~W!2~ iv/c22m!#/@C~W!2S~W!

3~ iv/c2m!#. ~2.9!

Note that only for the dc signal do we have the conservat
law RB(v50)1TB(v50)51. Below we will compare
these Boltzmann coefficients with those obtained from
Monte Carlo simulation for a truly microscopic medium.

III. NUMERICAL SOLUTION FOR MICROSCOPIC
MEDIA

Our medium is characterized on a microscopic scale by
array ofN point scatterers that are localized at random po
tionsxn (n51,2,...,N) within a spatial strip of total lengthW.
We have chosen theaveragespacing between the scattere
d[^dn&5^xn112xn&51 in all of our simulations. From
now on we will measure all lengths such asl, 1/m, andW in
units ofd. Our unit system of time is uniquely defined if w
also set the speedc51. We change thedegree of orderin
this system by varying the standard deviation of the unifo
distribution of these spacingsDd betweenDd50, corre-
sponding to an equidistant arrangement of scatterers as
perfect crystal, toDd'0.3d to represent a random medium
Becausep(V,V8) is independent of the position, all scatte
ers are assumed to have the same scattering strength.

Each scatterer is assigned a reflection probability ofr. A
perfectly transmitting medium would haver 50, whereas for
r 51 any incoming photon is reflected. Because of the o
dimensional nature of our system the anisotropy factog
introduced in Sec. II is directly related tor via g5122r .
In order to relate the microscopic parametersW, N, and
r to the macroscopic parameterms , we have to calculate
first the total probability of reflection forN scattering sites
where each site has a reflection probability ofr i and a trans-
mission probability of t i512r i . For two sites (N52)
one can just sum up the probabilities for all paths th
scatter once, three times, five times, etc., accord
to RN525r 11t1r 2t11t1r 2r 1r 2t11t1r 2r 1r 2r 1r 2t11¯5@r 1
1r 222r 1r 2#/@12r 1r 2#. Generalizing this counting schem
for N scatterers of equal reflection probabilityr 5r i we
obtain the total reflectivity,

RN5Nr/@11~N21!r #. ~3.1!

If we equate this with the reflection probability forv50
from the Boltzmann systemRB(v50)5mW/@11mW#
from Eq. ~2.9! we obtain the following relation between th
microscopic and macroscopic parametersms5N/@W(1
2r )#. For a sufficiently small reflectivityr the effective scat-
tering length 1/ms of the Boltzmann theory is equal toW/N
that is the average distance between the scattering sites.
8-3
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P. J. PEVERLYet al. PHYSICAL REVIEW E 65 031908
result is expected. The reduced scattering coefficienm
5rN/@W(12r )#, however, vanishes for perfect transm
sion (r 50).

We now describe some technical details of the numer
Monte Carlo simulations. We have injectedM photons into
the medium, each of which has a probability ofr to be scat-
tered at each locationxn . In traditional Monte Carlo simula-
tions used for finite laser pulse propagation through biolo
cal tissues@22#, a photon travels a random time and is th
redirected into a new random angle. In these simulati
each photon interacts with a different medium, and eve
single photon experiences a time-dependent medium wh
scattering sites change their location and scattering stren

In our simulations there are two distinct difference
which make our simulations computationally more dema
ing. First, we are interested in steady states, which req
large interaction times and therefore a larger number of p
tonsM. Second, as we are interested in exploring resona
like effects, we require the arrangement of the scatterer
be absolutely identical for each photon.

In order to simulate our boundary condition according
I (x50,1,t)511cos(vt), we could distribute all of our pho
tons initially to the left of our medium (x,0) with an initial
density given byI (x,1,t50)511cos(vx/c) for x,0 and
I (x,1,t50)50 for x.0. This extended probability distri
bution would then travel to the right, in agreement with o
boundary conditionI (x50,1,t)511cos(vt). A calculation
of this type, however, would require us to monitor the tim
evolution of all spatial locations at all times. In order
reduce the computational time significantly, we could inje
the train of ~right traveling! photons at a source located
x5220. The ‘‘pump rate’’ at the source is then varied as
function of time with frequencyv. A point source~at x
5220!, however, would require continuous generation
photons. To avoid the numerical burden associated with
extremely small time steps required to imitate continuo
pumping, we create a larger section of the wave train
periodic time intervals associated with an effective spatia
extended source (220,x,219). The adjoining sections o
the wave train are phase matched to mimic the desired
tinuous periodic wave train. In other words, the spacing
tween neighboring photons is chosen deterministically s
that the resulting photon density is described byI (x,1,t
50). This involves the inversion of a transcendental trig
nometric equation, which we have performed using a rap
converging iteration scheme.

The total photon probability density is then determined
summing up several mini-Gaussians that are centered ar
the locationxm(t) of each photon at timet,

P~x,t !5N (
m51

M

exp@2$x2xm~ t !%2/s2#, ~3.2!

where the width of each mini-Gaussian was chosen la
enough to overlap sufficiently with the Gaussian of its ne
est neighbor, but much smaller than the length scale of in
est, which is of the order of the wavelength in our proble
N denotes the normalization constant that depends on
pump rate at the source. In practical terms, our simulati
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were typically performed withM in the range of 100 million
photons, and a widths roughly 100 times smaller than th
wavelength. We found these parameters sufficient in al
our simulations to make the error due to the discretenes
the photons negligible.

The parameters that we have used in our simulations
N5100, W5100, and r 50.01 corresponding tom
5rN/@W(12r )#'0.01. We have chosen these paramet
because in this regime the medium has roughly eq
amounts of reflected and transmitted fields for the dc co
ponent,RB(v50)50.5025 andTB(v50)50.4975.

In order to test the steady state data obtained from
Monte Carlo simulation, we have also generalized the tra
fer matrix approach typically used in quantum mechan
@23# in order to describe intensity modulated laser fields.
this approach each point scatterer is represented by a 232
matrix linking the input and output channels,

Mn5S 12r n /tn r n /tn exp@2 i4pvxn /c#

2r n /tn exp@ i4pvxn /c# 1/tn
D

~3.3!

wherer n andtn are the individual scattering coefficients an
xn is the location of thenth scatterer. The collective prope
ties of the entire medium can be obtained by multiplying t
matrices numerically,M5)n51

N Mn where the matrixM1

~associated with the leftmost located scatterer! should be the
right most factor, as the individual matrices do not commu
The total reflection and transmission coefficients can
computed from the product matrixM via R52M1,2/M2,2
and T5det(M )/M2,2. This approach, however, is not we
suited for analyzing the time-dependent aspects of
dynamics.

IV. DISCUSSION OF THE RESULTS

In Fig. 1 we display a typical photon probabilityP(x,t) of
Eq. ~3.2! obtained as a histogram overM5100 million pho-
tons after an interaction time oft5400. The photon source i

FIG. 1. The final light intensity distribution as a function o
position~in units of the average interscatterer distanced!. Sketch of
the geometry used in the calculation for an index-matched sca
ing medium. ~The parameters used in the simulation wereM
5100 000 000 photons,v51.05, N5100 scatterers,r 50.02, W
5100, Dd50.287, t5400, and the width of each mini-Gaussia
wass50.01, the photon source is located atx5220.!
8-4
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PHOTON-DENSITY WAVES IN MACROSCOPIC AND . . . PHYSICAL REVIEW E65 031908
located atx5220. In the absence of the scattering mediu
we would obtain a distributionP(x,t)5@11cos(vt2vx/c)#
u(x120), with u the unit step function. The spatial doma
can be divided up into six different regions, ranging fro
380,x,2100, 2100,x,220, 220,x,0, 0,x,100,
100,x,200, and 200,x,380. The outermost region
~2380,x,2100 and 200,x,380! correspond to the early
time response of the medium to the incoming field. T
transient part corresponds to the time it takes for the inco
ing photons to ‘‘fill up’’ the medium with light in order to
establish the steady state inside the medium. The steady
is established when the pump rate~number of photons cre
ated atx5220 per time unit! is identical to the sum of the
rates of the transmitted and reflected photon fluxes esca
at the two boundariesx50 andx5100. The steady state i
then characterized by transmitted and reflected intensity w
constant amplitudes as shown for2100,x,220 and 100
,x,200. Comparing the amplitudes of the steady state
clearly see that the ac component in the transmitted por
has been less attenuated than its counterpart in the refle
intensity. The fact that in both curves the minima are
above zero indicate that the ac component has been at
ated more compared to the dc component.

The photons inside the region220,x,0 are the sum of
the incoming~right going! and the diffusively reflected light
In this region the dc component of the reflected light proh
its the minima ofP(x) from being equal to zero. The ver
front edge close tox5380 is sometimes called the ‘‘ballisti
light’’ as it corresponds to that portion of the very early ph
tons that could pass through the medium without any refl
tion. The following photons have experienced a few refl
tions and are called ‘‘snake light’’@4#.

Inside the medium (0,x,100) it is interesting to note
that the maxima and the minima ofP(x) decay quite differ-
ently as a function ofx. Due to the complicated interferenc
of forward and backward scattered light close to the en
surface of the medium atx520, the amplitude associate
with the minima actually grows first to aboutx520, whereas
for x.20 it decays. We should note that the graph in Fig
was displayed with 24 000 points in order to resolve det
on length scales much smaller than the wavelength.

The steady state distribution for the reflected and tra
mitted photons is of special interest in this work. It is used
determine the reflection and transmission coefficientsR(v)
andT(v), which have been obtained using a nonlinear le
squares fitting algorithm to determine the phase and the
plitude. These numbers were then compared directly with
analytical reflection and transmission coefficientsRB(v) and
TB(v) obtained from the Boltzmann theory of Eq.~2.9!.

We have compared the two values for the transmiss
coefficientT(v) andTB(v) and computed the relative erro
E5 zuTB(v)u2uT(v)uz/uT(v)u of the Boltzmann theory for
various media that differ by degree of randomness as c
acterized by the standard deviation of the uniformly distr
uted spacings between the scatterersDd. The parameter
Dd50 corresponds to an equidistant arrangement of sca
ers as in a perfect crystal, whereas forDd'0.29 the dis-
tances between the scatterers are random.

With the exception of a certain specific subset of mod
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lation frequencies to be discussed below, practically all sim
lations indicated that the Boltzman predictions had errors
at most 0.5%, independent of the degree of randomness.
clearly demonstrates that a medium consisting of onlyN
5100 scatterers can be adequately approximated by the m
roscopic Boltzman theory. We should note that the range
frequencies investigated in our studies corresponds to w
lengths much larger than the entire medium (l5500) to
those as small as a tenth of the average spacing (l50.1).

The only situation we encountered where the Boltzma
equation becomes inapplicable is for very special choice
the wavelength (l52/n,n51,2,3,...) for nearly perfectly or-
dered media (Dd'0). These exceptional cases for which t
Boltzmann approach fails are displayed in Fig. 2.

The largest failure of the Boltzmann equation occurs fo
wavelength that is twice the interscatterer spacing,l52. In
contrast to scattering of electromagnetic radiation at in
faces with different indices of refraction, the intensity wa
does not change its phase when scattered. Correspondi
any light path that is based on two scattering events in
feres fully constructively with the nonscattered portion. Th
is an interesting resonance effect that is reminiscent of Br
scattering in perfect crystals. However, in contrast to
usual Bragg scattering associated with the carrier freque
of the field, in our case the interference happens on
length scale of the intensity modulation. Similarly constru
tive paths can also be found forl51, 1

2, and 1
4, however, the

associated resonances are much narrower comparedl
52. For l54 ~not shown! there are constructive as well a
destructive paths possible, and the maximum error was
than 0.2%. The data represented by the markers were
tained from the Monte Carlo simulation, whereas the cur
are the result of the transfer matrix approach.

To analyze the breakdown of the Boltzmann theory
describe a perfectly ordered media in more detail, we h
displayed the errorE in Fig. 3 for a larger range of the
modulation wavelength 0.1,l,2.2. With the exception of
the few frequency cases discussed above, the error due t

FIG. 2. The error of the Boltzmann theory for a microscop
medium as a function of the degree of orderDd ~in units of d! for
various wavelengths~in units ofd! for the transmission coefficient
The markers are the data from the Monte Carlo simulations w
M510 000 000 photons,N5100 scatterers,r 50.01, W5100, t
5400~in units ofd/c!, and the width of each ‘‘mini-Gaussian’’ wa
s50.01, the photon source is located atx5220.
8-5
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Boltzmann approximation stays below the upper limit
0.5%. In the inset we have displayed the resonance aro
l50.5 on a much finer scale. The peak has a half-width
about 0.0014, which is less than 0.3% of the wavelength
other words, only wavelengths in the extremely narrow ran
of 0.498,l,0.502 are able to ‘‘resonate’’ with a perfectl
ordered medium. In summary, unless that medium is p
fectly ordered and the wavelength is a fraction of 2, t
Boltzmann theory explains the transmitted portion of t
steady state intensity remarkably well.

All previous calculations were performed for the mediu
with N5100 scatterers. Let us now demonstrate the bre
down of the Boltzmann equation for media with a smal
number of scatterers. We have kept the corresponding m
roscopic averaged quantities such asm and W constant and
adjusted the individual scattering strengthr as we variedN
according tor 5mW/(mW1N). We chose the medium with
a maximum amount of disorder.

In Fig. 4 we display the transmission and reflection co
ficients as functions of the modulation frequencyv for media
consisting ofN55 and 10 scatterers. The continuous cur

FIG. 3. The error of the Boltzmann theory for a perfectly o
dered medium (Dd50) as a function of the wavelengthl ~in units
of d!. The inset shows the resonance forl50.5, the continuous line
is the prediction from the transfer matrix approach. The circles
the data from the Monte Carlo simulation usingM510 000 000
photons.~The parameters used in the simulation wereN5100 scat-
terers,r 50.01,W5100, t5400 d/c, and the width of each mini-
Gaussian wass50.01, the photon source is located atx5220.!

FIG. 4. The transmission and reflection as a function of
modulation frequency of the laser~in units of c/d! for a medium
with N55 andN510 scatterers. The continuous line is the pred
tion of the Boltzmann equation.
03190
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corresponds to the prediction of the Boltzmann equation.
small modulation frequencies the agreement with the Bo
mann equation is remarkably good even for very diluted m
dia consisting of onlyN510 scattering sites. At the sam
time the optical properties of theN55 medium depends very
much on how the individual scatterers are arranged. As
frequencies get larger the Boltzmann equation works sligh
better to predict the transmission than the reflection coe
cient. For media with more thanN550 random scatterers th
predictions of the Boltzmann equation are quite reasona
for all frequencies.

V. SUMMARY AND CONCLUSIONS

We have tested the applicability of the Boltzmann scatt
ing theory to describe the optical properties for a system w
only a finite number of randomly located scatterers.
equating the total reflection probability for the continuo
and the heterogeneous media, we derived a relation betw
the microscopic reflection coefficient of each slab and m
roscopic parameters such as the scattering coefficientm. The
validity of this relation is established for the more gene
case in which the intensity is modulated as a function
time. With the exception of very specific modulation wav
lengths and a sufficient amount of order in the system
Boltzmann theory is surprisingly reliable to describe ev
heterogeneous media that are comprised of only 10 sca
ers. The Boltzmann theory even works remarkably well in
region in which the wavelength associated with the mo
lated intensity is short enough and comparable to the in
scatterer spacing thus permitting at least in principle
resolution of the discreteness of the scatterers. One re
why even a medium comprised of onlyN510 scatterers can
be described by a theory that is based on a continuous s
tering medium could be the fact that for our parameter
gime the average reflected and transmitted photons exp
ence many more than just 10 scattering events.

The main result reported in this work is certainly not t
final goal of this line of inquiry. The long term goal of ou
studies is to find an improved description of the optical pro
erties of highly scattering media that goes even beyond
macroscopic Boltzmann theory. As mentioned in the int
duction, the Boltzmann equation cannot describe diffracti
interference or refraction of electromagnetic fields, and
would be quite desirable to find a new theoretical framew
that avoids all the probably unnecessary microscopic de
of the medium but nevertheless can include some wave
pects of light. So as a first step towards this theory, it is qu
important to clearly identify inaccuracies in a continuo
medium description that are due to the averaging and th
that are intrinsically due to the omission of the coheren
and general wave nature of the photons. In a related w
@24# we have begun to investigate the importance of
phase of the electromagnetic field for heterogeneous ran
media by comparing the predictions of the Maxwell equ
tions with that of an intensity theory.

The present analysis has been performed for a o
dimensional random medium that can be realized experim
tally by a sample of plane-parallel dielectric layers. T
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reader might wonder about the generality of the conclus
for those media that do not have a symmetry permittin
reduced dimensional description. We should point out t
even numerical solutions to the three-dimensional Bo
mann equation are presently very difficult—if n
impossible—to obtain. However, we would like to rema
that there is no fundamental difference in the physics
tween a single scattering event in a one- or three-dimensi
description and we would expect that our conclusion ab
the applicability of the Boltzmann equation for truly heter
geneous media should also hold in two or three dimensio
In fact one can show that the essential aspects of the sca
ing theory such as the partial wave decomposition or e
the optical theorem@25# have their direct counterpart in two
and even one-dimensional scattering systems. In contra
the ballistic transport of particles described in this work, t
propagation dynamics of a wave, however, could dep
M
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more strongly on the spatial dimensionality for weakly sc
tering media due to the impact of the polarization. In on
and two-dimensional systems the polarization direction n
not change, but in three dimensions this change is unav
able. Our future work is directed towards these question
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