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Photon-density waves in macroscopic and microscopic plane-parallel scattering samples
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We investigate the validity of the Boltzmann equation to predict the reflection and transmission coefficients
for an intensity modulated laser beam passing through a microscopic medium consisting of discrete scatterers.
For a one-dimensional model system we demonstrate that the Boltzmann equation works remarkably well for
small modulation frequencies, even to describe a medium comprised of only 10 scatterers. Discrepancies can
be found only if the modulation wavelength of the laser intensity is commensurate with the spacing between
the scatterers and if the medium is sufficiently ordered.

DOI: 10.1103/PhysRevE.65.031908 PACS nun®er87.90+y, 05.60—k, 42.62.Be

I. INTRODUCTION forefront of computational physics, and numerical solutions
to the Maxwell equations in all three dimensions are very
The Boltzmann equation is regarded as one of the modlifficult [16,17]. In a recent wor§ 18], we have employed a
fundamental descriptions in the science of particle transporsimple one-dimensional model systé®,2( to investigate
in highly scattering or collisional medifl]. It has found the breakdown of the diffusion approximation for large
applications in areas such as meteorology, oceanography, asodulation frequencies.
trophysics, statistical thermal physics, and medical optics. In In this study we will go one step further and explore the
astrophysics or neutron physics the Boltzmann equatiowalidity of the Boltzmann theory for modulation frequencies
models the average motion of real particles such as neutronghose corresponding wavelength is so short that it is com-
or atomg 2,3]. In medical optics on the other hand, the Bolt- parable to the average spacing between the individual scat-
zmann equation models the propagation of electromagnetitering sites. The Boltzmann equation models the collection
radiation through highly scattering biological materigdg. of many individual scatterers by considering a very limited
In the latter case this approach is useful only if the physics ohumber of the medium’s average properties. Only four pa-
the carrier frequency is not so important, so that the radiatiomameters characterize a scattering medium: the effective in-
field can be characterized by its intensity only. Until few dex of refraction that determines the propagation spekd
years ago, it was thought that typical wave phenomena, sudhe absence of the scattering, the scattering coeffigignt
as diffraction, interference or refraction of electromagnetic(inverse of the scattering lengththe absorption coefficient
waves, could not be described by the probabilistic Boltz-u,, and the scattering phase functipQ2,Q"). This func-
mann theory, in which light is modeled by ballistic quasipar-tion is the probability that an incoming particle associated
ticles (“photons”). with solid angleQ'’ is scattered into directio€). In the
About ten years agf5], it was shown for the first time following we assume the carrier wavelength of the laser field
that if the intensity of a laser field is modulated periodically,to be several orders of magnitude smaller than the typical
a new wave form called a “photon-density wavi8,7] can interscatterer spacing.
be generated inside a highly scattering medium. The coher- We intend to address the following questions: How good
ence of these intensity modulated waves decays on lengiB a macroscopic Boltzmann theory with respect to modeling
scales that can exceed the coherence length associated withmedium that consists of only, say, 100 scatterers? If the
the carrier frequency by several orders of magnitfgleln  wavelength of the modulation of the incoming laser beam
fact these waves were experimentally shown to exhibit thdsecomes comparable to the average spacing between the
usual wave properties including interfereri®&10], refrac-  scattering sites, can the discreteness of the scatterers lead to
tion [11,12, diffraction [13], and have shown potential for different collective responses of the medium than that de-
applications in other ared44,15. scribed by the Boltzmann theory? This question is important
Most of the theoretical work that followed the experimen- to the understanding of the rather counterintuitive nonvanish-
tal breakthroughs made thus far in these investigations wasg transmission and zero reflection probability for a medium
based on analytical solutions in the diffusion limit of the of finite length in the large-frequency limit predicted by the
Boltzmann equation. However, for sufficiently high modula- Boltzmann equatiof18,21]. Can one actually use properly
tion frequencies, experiments have indicated the breakdowchosen modulation wavelengths to excite collective reso-
of the diffusion approximation, and one has to study the fullnances if the wavelength matches the average spacing be-
solution of the Boltzmann equation. Fully analytical forms of tween the scatterers? The last question is intriguing in a bio-
the solution prove to be extremely difficult to obtain. Evenlogical tissue, e.g., where the modulation wavelength can be
numerical simulations of the full Boltzmann theory are at thetuned to the average size of the microscopic scattdrers
gion of different indices of refractioras well as their spac-

ings.
*Present address: Department of Mathematics, lllinois State Uni- In order to provide some insight into these questions we
versity, Normal, IL 61790-4520. have used a simple one-dimensioriaD) model system.
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This spatially restricted model system has two major advan- [1 4 9 s

tages: it contains most of the relevant aspects of a 3D sys- (E EH)(?—X)I(X,QJ): —[?(1—9)+Ma (X, €,t)
tem, the full Boltzmann equation can be solved analytically,

and the required Monte Carlo simulations can be performed 1

numerically quite efficiently with sufficient accuracy. Addi- +Ms§(1_9)|(x’_9’t)’
tionally, this reduced dimensional model system can also be

realized experimentally in optical fibers or other plane- 2.3

parallel geometries as discussed in Rgf3, [18], and[19].  \yhere()==+1 represents the photon flux along the positive

The present work is organized as follows. In Sec. Il weand negative direction. To simplify our notation we assume
discuss the Boltzmann equation and its analytical solution. Ifrom now on thatu,=0 and introduce the reduced scattering
Sec. lll we describe the random-walk computations simulatgoefficientu as u=us (1—g)/2.
ing the propagation of the photon-density waves through a |f we introduce the effective photon density(x,t)
truly heterogeneous medium made up of individual scatter=|(x,+,t)+1(x,—,t) and an effective current density
ers. In the fourth section we will compare the results ob-J(x,t)=I(x,+,t)—I(x,—,t), we find the following equa-
tained from both methods and assess the range of applicabtion for the two-component vectoB=(P,J) in Fourier
ity of the Boltzmann theory. We complete this work with a space defined by
summary and a conclusion.

P(x)=f dt €“P(x,t),

II. ANALYTICAL SOLUTION OF THE o
ONE-DIMENSIONAL BOLTZMANN EQUATION

00|

FOR THE MACROSCOPIC MEDIUM dt €(x,t),(2x)

The three-dimensional Boltzmann equatidradiative 5
transfer equation[1] is given by [?—XB(X,w)=[i(w/C)0'— 2 uN]B(X, ), (2.4)

14 / / / where o denotes the X2 matrix o={(0,1),(1,0} and N
EEJFQ.V)IU’Q’U_’“SJ dQ’p(Q,Q91(r, Q%0 ={(0,1),(0,0} is the nilpotent matrix f{o(r wrzic(h or%ly the last
element in the upper row is nonzero.
—(pstpa)l(r,Q,1), (2.1 We assume that the medium extends frorxX0<W and
that the index of refraction is the same inside and outside the
wherel (r,€,t) represents the local radiation density propa-medium. We can control the incoming photon flux at the left
gating in theQ direction, and the inverse of the scattering interface of the medium and also the left going wave at the
coefficientsu and u, describe the effective scattering and fight edge of the medium

absorption lengths. The parameteis the speed of light in I(x=0,4,t)=1+cog wt)
the medium. The scattering phase functipQ,Q’) de- Y ’
scribes the conditional probability that a laser field in fbe [(x=W,—,t)=0, (2.5

solid angle is scattered into t@ direction. For simple me- _ ) ) .
dia this phase function can be constructed from the averagihere 1(x=0,+,t) represents the incoming laser field,

differential cross section of the single scatterer. Below weVN0se intensity is modulated with frequeney Please note

. : : : - thatw should not be confused with thenuch largey carrier
Eigjmct this scattering phase function to only two dlrectlonsfrequency of the field, which is not included in the Boltz-
mann description. Because of the linearity of the Boltzmann
1 1 equation(2.4) we can find the solutions for a general peri-
N T 1 - odic incoming field of the form (x=0,+,t)=exp(wt) and
P(2,Q7) 477(1 g)o(cost+1)+ A (1+g) then superpose the corresponding complex solutions for the
ac (w#0) and dc w=0) components. After a little bit of
algebra that involves diagonalizing and exponentiating the
matrix [i(w/c)o—2uN] and matching the boundaries we
where —1=<g=<1 is an adjustable parameter and whereobtain as the solution inside the medium
cos9=Q-Q’. The numerical anisotropy factgris defined , )
as the average cosine of the scattering andle g P(X)={CO)[C(W) = S(W) (iw/c—2u)]+ S(x)(iw/c

X §(costr—1), (2.2

=[dQ’'p(2,Q")cosd. Due to its highly bidirectional char- —2)[C(W) — S(W)i w/cTH[ C(W) — S(W)

acter, the backward and forward scattering are over-

represented at the expense of the scattering events in other X(lwlc—w)],

directions that are underrepresented. However, this form sim- ) ]

plifies our theoretical analysis significantly. J(X) ={S(X)i w/c[C(W) = S(W) (i w/c—2u)]+ C(X)
With this bidirectional phase function, the Boltzmann _ ; _

equation can be expressed as a simple coupled set of two X[CW) = SWiw/eTHIC(W) = S(W)

differential equations in spaceand timet X(iwlc—pu)], (2.6)
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where we have defined the complex functior®x) =P(x=0)—-1 for the reflected portion. Using the analytical
=sinh(kx)/x with x=\[—2iwu/c—(w/c)’] and C(x)  solution of Eq.(2.6) we obtain
=coshx). The eigenvaluex can be decomposed into its

real and imaginary parts according to Ra(w)=S(W) 1/[C(W)— S(W)(iw/c— )],
B ® w2 ) 1/2 w2 1/2 . '
K==|clza2 T ) 52 Te(w)=[C(W)?—iw/cSW)%(iw/c—2u)]/[C(W)—S(W)
! w2 12 2712 X(iwlc—pu)]. (2.9
+i E(Fﬂﬁ +5a|

Note that only for the dc signal do we have the conservation
which indicates an effective wavelength inside the mediumaw Rg(w=0)+Tg(w=0)=1. Below we will compare
that can be much smaller than the wavelength2mc/w in ~ these Boltzmann coefficients with those obtained from a
the absence of any scatteringuf> w/(2c). Monte Carlo simulation for a truly microscopic medium.

The large- and small-frequency limit for E(2.6) can be

read off immediately IIl. NUMERICAL SOLUTION FOR MICROSCOPIC

lim P(x)=[1+2u(W—x)J/[ 1+ xW], MEDIA

@0 Our medium is characterized on a microscopic scale by an
] ] array ofN point scatterers that are localized at random posi-
lim P(x)=exp(i ox/c)exp — ux). (2.7 tionsx, (n=1,2,...N) within a spatial strip of total lengti.

w— 0

We have chosen thaveragespacing between the scatterers

Two observations are in order. First, it is interesting to notegfvé%”rz jvi:XCinlllr_n)érgs:urle :ar:l Iae”n chsogtrjcilggll?tlo;:dvl\:/ri?\m

that in one spatial dimension the dc component decays . . '9tns . o & :
units ofd. Our unit system of time is uniquely defined if we

linearly as a function of the distance. This component - .
also shows an unexpected dependency on the total length Fo set the speecll— 1. We change theigg(ee of Om'e"f?
is system by varying the standard deviation of the uniform

the mediumW. The distancexqecy after which P(x) has distribution of these spacingdd betweenAd=0, corre-

decayed by a factor of &/increases linearly with the total ) - .
length of the medium, Xgecaf@=0)=[(e—1)(1+ W) sponding to an equidistant arrangement of scatterers as in a
1 Adeca) - - R
: g L perfect crystal, taAd~0.3d to represent a random medium.
*+epWl/[2pe], whereas in the large-frequency limit the ac Becausep(2,Q') is independent of the position, all scatter-

component decays purely exponentiall)Kgecaf w— ) )
=1/u. On the other hand, the ratio of the photon probabilityers are assumed to havg the same scattering S”?‘!"gth-
at the right and left edges of the medium, {2 uW) Each scatterer is assigned a reflection probability. &
decreasgs with increasgi;n medium len tf,1 f@r:% a's perfectly transmitting medium would have-0, whereas for
9 9 r=1 any incoming photon is reflected. Because of the one-

expected. . . .
Second, the transmitted intensity does not vanish in thg imensional nature of our system the anisotropy fagor

large-frequency limit. One could haymcorrectly expected :ntrodduce(tj in ?etc. tIL IS dl_rectly rellated towat 9= E_Zra
that the smaller the wavelength of the intensity modulation,rntorther o relate the m|crostcop|c parr?me ?15 ,I ar|1 ;
the “easier” it would be for a diffusive medium to attenuate . o . 'c MACTOSCOPIC parametals, We nhave fo cacuate
these short wavelength oscillations. But the Iarge—frequencf rst the total _probab|||ty of rgﬂecﬂon fo!\[ scattering sites
limit approaches a form independent of the frequency. W her_e each sﬂe_has a reflection probabllltyrp_and a trans-
will investigate if the Boltzmann equation holds for frequen-m'SSIon probablhty ofti=1-r;. For two sites N=2)
cies so large that the modulation wavelength becomes confn® can just sum up _the pro_bablllyes for all paths that
parable to the average spacing between the scattering sit patter once, three times, five times, etc., according
In the same limit, the intensity distribution becomes indepen-° RN=2= M1t Ll oty F LTl oty F ol ofaF oty £ =1y
dent of the spatial length of the mediunt +ro=2rr,)/[1=rqr5]. Generalm_ng this counting scheme

In the limit of an infinitely extended mediun(= =) we for N scatterers of e_q_ual reflection probability=r; we
obtain only reflected light obtain the total reflectivity,

) Kk—2u+iwlc
lim P(x)= ———
Wesoo k—u+iwlc

e, (2.9 Ry=Nr/[1+(N-1)r]. (3.

If we equate this with the reflection probability fes=0
Since « [defined below Eq(2.6)] has a negative real part, from the Boltzmann systenRg(w=0)=uW/[1+ uW]
P(x) in Eq. (2.8) decays in space and approaches zers as from Eq.(2.9) we obtain the following relation between the
—o0 as expected. microscopic and macroscopic parameters=N/[W(1
Using our boundary conditions fdi(x=0,+,t) andI(x —r)]. For a sufficiently small reflectivity the effective scat-
=W, —,t) we obtain the coefficient for the transmitted por- tering length 144 of the Boltzmann theory is equal ¥&/N
tion for the steady state abg(w)=P(x=W) and Rg(w) that is the average distance between the scattering sites. This
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result is expected. The reduced scattering coefficient 3.0 m—
=rN/[W(1-r)], however, vanishes for perfect transmis- I |

. 25 : -
sion (r=0). | photon density |

We now describe some technical details of the numerical 20k P
Monte Carlo simulations. We have injectétl photons into -
the medium, each of which has a probabilityrab be scat- L5+
tered at each locatioxy, . In traditional Monte Carlo simula- 10 i
tions used for finite laser pulse propagation through biologi- |
cal tissueg22], a photon travels a random time and is then 0.5
redirected into a new random angle. In these simulations I
. . . . 00 con by b b B b g Ty

each photon interacts with a different medium, and even a 400 -300 -200 -100 O 100 200 300 400
single photon experiences a time-dependent medium whose position x

scattering sites change their location and scattering strength.

In our simulations there are two distinct differences, FIG. 1. The final light intensity distribution as a function of
which make our simulations computationally more demand+osition(in units of the average interscatterer distadceSketch of
ing. First, we are interested in steady states, which requiréwe geometry used in the calculation for an index-matched scatter-
large interaction times and therefore a larger number of phong medium. (The parameters used in the simulation wevie
tonsM. Second, as we are interested in exploring resonance= 100000000 photonsy=1.05, N=100 scatterersf =0.02, W

like effects, we require the arrangement of the scatterers tg 100, Ad=0.287,t=400, and the width of each mini-Gaussian
be absolutely identical for each photon. wass=0.01, the photon source is locatedxat —20.)

In order to simulate our boundary cpndition according toere typically performed wittM in the range of 100 million
I(x=_0,_Jf ,1)=1+cos(t), we could_ distribute all of Ol_Jr_p_ho- photons, and a widtls roughly 100 times smaller than the
tons initially to the left of our mediumx(<0) with an initial \yayelength. We found these parameters sufficient in all of
density given byl (x,+,t=0)=1+cosfwx/c) for x<0 and 4 simulations to make the error due to the discreteness of
I(x,+,t=0)=0 for x>0. This extended probability distri- (e photons negligible.
bution would then travel to the right, in agreement with our e parameters that we have used in our simulations are
boundary conditior (x=0,+,t)=1+cost). A calculation  N=100 W=100, and r=0.01 corresponding  to u
of this type, however, would require us to monitor the time:rN/[W(l—r)]w0.0l. We have chosen these parameters
evolution of all spatial locations at all times. In order t0 pacause in this regime the medium has roughly equal
reduce the computational time significantly, we could injectymounts of reflected and transmitted fields for the dc com-
the train of (right traveling photons at a source located at ponent,Rg(w=0)=0.5025 andT z(w=0)=0.4975.

x=—20. The “pump rate” at the source is then varied as @ | order to test the steady state data obtained from the
function of time with frequencyw. A point source(at X Monte Carlo simulation, we have also generalized the trans-

= —20), however, would require continuous generation offer matrix approach typically used in quantum mechanics
photons. To avoid the numerical burden associated with they3) in order to describe intensity modulated laser fields. In

extremely small time steps required to imitate continuouspis approach each point scatterer is represented by 2 2
pumping, we create a larger section of the wave train iNnatrix linking the input and output channels,
periodic time intervals associated with an effective spatially

extended source<{20<x<—19). The adjoining sections of 1-r,/t, ra/thexd —idmwx,/c]
t_he wave trgin_are phase_matched to mimic the desir'ed coMn= —rolt exdidmox,/c] 1k,

tinuous periodic wave train. In other words, the spacing be-

tween neighboring photons is chosen deterministically such 33

tfgt tf}lfah_re_s,ultllng pg?to_n den_sny 'fS dtescrlbed(;lﬁx,tJrl,tt_ wherer , andt, are the individual scattering coefficients and
=0). This involves the inversion of a transcendental ngo-xn is the location of thenth scatterer. The collective proper-

nometric equation, which we have performed using a rapidlyjeq of the entire medium can be obtained by multiplying the
converging iteration scheme.

The total photon probability density is then determined bymatrlces numericallyM =I1,_,M, where the matrixM,

. S : ssociated with the leftmost located scattestould be the
summing up several mini-Gaussians that are centered arou Lo :
) . right most factor, as the individual matrices do not commute.
the locationx,,(t) of each photon at timé

The total reflection and transmission coefficients can be
M computed from the product matrid via R=—Mj,/M,,

P(x,t)=N 2, exg —{x—xn(t)}¥s?], (3.2  and T=detM)/M,,. This approach, however, is not well
m=1 suited for analyzing the time-dependent aspects of the

. - : dynamics.
where the width of each mini-Gaussian was chosen Iargey

enough to overlap sufficiently with the Gaussian of its near- IV. DISCUSSION OF THE RESULTS

est neighbor, but much smaller than the length scale of inter-

est, which is of the order of the wavelength in our problem. In Fig. 1 we display a typical photon probabiliB(x,t) of

N denotes the normalization constant that depends on thEqg. (3.2) obtained as a histogram oviet= 100 million pho-
pump rate at the source. In practical terms, our simulationgons after an interaction time of 400. The photon source is
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located atx= —20. In the absence of the scattering medium
we would obtain a distributiof(x,t) =[ 1+ cost— wx/C)]

25 18\

6(x+ 20), with 6 the unit step function. The spatial domain e relative error [%]

can be divided up into six different regions, ranging from A TR Ne, i
380<x< —100, —100<x< —20, —20<x<0, 0<x<100, 154 ¥\ % e, -
100<x<200, and 20€:x<380. The outermost regions S S i
(—380<x< —100 and 206:x<380) correspond to the early 07 jaty ¥ n
time response of the medium to the incoming field. This ] E
transient part corresponds to the time it takes for the incom- STy N A F
ing photons to “fill up” the medium with light in order to T o R r
establish the steady state inside the medium. The steady state 0 6 ' 0.1 02 0.;

is established when the pump rdtmimber of photons cre- disorder Ad
ated atx=—20 per time unit is identical to the sum of the
rates of the transmitted and reflected photon fluxes escaping FIG. 2. The error of the Boltzmann theory for a microscopic
at the two boundaries=0 andx=100. The steady state is medium as a function of the degree of ordet (in units ofd) for
then characterized by transmitted and reflected intensity witNarious wavelengthéin units ofd) for the transmission coefficient.
constant amplitudes as shown ferl00<x< —20 and 100 The markers are the data from the Monte Carlo simulations with
<x<200. Comparing the amplitudes of the steady state wé/! = 10000000 photonsN=100 scatterersy=0.01, W=100, t
clearly see that the ac component in the transmitted portiop 00N units ofd/c), and the width of each *mini-Gaussian” was
has been less attenuated than its counterpart in the reflectdd
intensity. The fact that in both curves the minima are far
above zero indicate that the ac component has been attenlation frequencies to be discussed below, practically all simu-
ated more compared to the dc component. lations indicated that the Boltzman predictions had errors of
The photons inside the region20<x<0 are the sum of at most 0.5%, independent of the degree of randomness. This
the incoming(right going and the diffusively reflected light. clearly demonstrates that a medium consisting of dxly
In this region the dc component of the reflected light prohib-=100 scatterers can be adequately approximated by the mac-
its the minima ofP(x) from being equal to zero. The very roscopic Boltzman theory. We should note that the range of
front edge close ta =380 is sometimes called the “ballistic frequencies investigated in our studies corresponds to wave-
light” as it corresponds to that portion of the very early pho-lengths much larger than the entire medium=500) to
tons that could pass through the medium without any reflecthose as small as a tenth of the average spacingQ(1).
tion. The following photons have experienced a few reflec- The only situation we encountered where the Boltzmann
tions and are called “snake light4]. equation becomes inapplicable is for very special choices of
Inside the medium (&x<100) it is interesting to note the wavelengthX=2/h,n=1,2,3,...) for nearly perfectly or-
that the maxima and the minima Bf(x) decay quite differ- dered mediadd~0). These exceptional cases for which the
ently as a function ok. Due to the complicated interference Boltzmann approach fails are displayed in Fig. 2.
of forward and backward scattered light close to the entry The largest failure of the Boltzmann equation occurs for a
surface of the medium at=20, the amplitude associated wavelength that is twice the interscatterer spacing2. In
with the minima actually grows first to aboxt= 20, whereas contrast to scattering of electromagnetic radiation at inter-
for x>20 it decays. We should note that the graph in Fig. 1faces with different indices of refraction, the intensity wave
was displayed with 24 000 points in order to resolve detailsloes not change its phase when scattered. Correspondingly,
on length scales much smaller than the wavelength. any light path that is based on two scattering events inter-
The steady state distribution for the reflected and transferes fully constructively with the nonscattered portion. This
mitted photons is of special interest in this work. It is used tois an interesting resonance effect that is reminiscent of Bragg
determine the reflection and transmission coefficid(t®) scattering in perfect crystals. However, in contrast to the
andT(w), which have been obtained using a nonlinear leastisual Bragg scattering associated with the carrier frequency
squares fitting algorithm to determine the phase and the anof the field, in our case the interference happens on the
plitude. These numbers were then compared directly with théength scale of the intensity modulation. Similarly construc-
analytical reflection and transmission coefficieRi§ w) and  tive paths can also be found far=1, 3, and3, however, the
Tg(w) obtained from the Boltzmann theory of EQ.9). associated resonances are much narrower compared to
We have compared the two values for the transmission=2. For\ =4 (not shown there are constructive as well as
coefficientT(w) andTg(w) and computed the relative error destructive paths possible, and the maximum error was less
E=||Tg(w)|—|T(w)|[/|]T(w)| of the Boltzmann theory for than 0.2%. The data represented by the markers were ob-
various media that differ by degree of randomness as chatained from the Monte Carlo simulation, whereas the curves
acterized by the standard deviation of the uniformly distrib-are the result of the transfer matrix approach.
uted spacings between the scatterAm. The parameter To analyze the breakdown of the Boltzmann theory to
Ad=0 corresponds to an equidistant arrangement of scattegescribe a perfectly ordered media in more detail, we have
ers as in a perfect crystal, whereas fod~0.29 the dis- displayed the erroE in Fig. 3 for a larger range of the
tances between the scatterers are random. modulation wavelength 0\ <2.2. With the exception of
With the exception of a certain specific subset of modu-the few frequency cases discussed above, the error due to the

0.01, the photon source is locatedxat — 20.

031908-5



P. J. PEVERLYet al. PHYSICAL REVIEW E 65 031908

p— — predictions of the Boltzmann equation are quite reasonable
0 0.5 1 1.5 2 for all frequencies.
wave length A

30 b e e corresponds to the prediction of the Boltzmann equation. For
’s g ] small modulation frequencies the agreement with the Boltz-
— . mann equation is remarkably good even for very diluted me-
% 20 | » dia consisting of onlyN=10 scattering sites. At the same
£ : 0 A time the optical properties of tié=5 medium depends very
v 15 ¢ 1 P
o E 1 much on how the individual scatterers are arranged. As the
Z10F Saos o w3 osor o || ] frequencies get larger the Boltzmann equation works slightly
& : ] better to predict the transmission than the reflection coeffi-
3 i Jk cient. For media with more thad=50 random scatterers the
0 ;‘ — L —

FIG. 3. The error of the Boltzmann theory for a perfectly or- V. SUMMARY AND CONCLUSIONS

dered medium4d=0) as a function of the wavelength(in units . -
of d). The inset shows the resonance ot 0.5, the continuous line We have tested the applicability of the Boltzmann scatter-

is the prediction from the transfer matrix approach. The circles aré"9 theor_y ,to describe the optical properties for a system with
the data from the Monte Carlo simulation usiigj=10 000 000 only a finite number of randomly located scatterers. By

photons (The parameters used in the simulation wiire 100 scat- equating the total reflection_ probabilit_y for the c_ontinuous
terers,r =0.01, W= 100, t=400d/c, and the width of each mini- and the heterogeneous media, we derived a relation between

Gaussian was=0.01, the photon source is locatedxat — 20) the microscopic reflection coefficient of each slab and mac-
roscopic parameters such as the scattering coeffigielhe
Boltzmann approximation stays below the upper limit 0fvalidity of this relati'on is .established for the more ggneral
0.5%. In the inset we have displayed the resonance arourfS€ in which the intensity is modulated as a function of
A=0.5 on a much finer scale. The peak has a half-width ofime: With the exception of very specific modulation wave-
about 0.0014, which is less than 0.3% of the wavelength. I€Ngths and a sufficient amount of order in the system the
other words, only wavelengths in the extremely narrow rang&°ltzmann theory is surprisingly reliable to describe even
of 0.498<\<0.502 are able to “resonate” with a perfectly heterogeneous media that are comprised of only 10 scatter-
ordered medium. In summary, unless that medium is per€'S: The Boltzmann theory even works remarkably well in a
fectly ordered and the wavelength is a fraction of 2, thef®9ion in which the wavelength associated with the modu-
Boltzmann theory explains the transmitted portion of thelated intensity is short enough and comparable to the inter-

steady state intensity remarkably well. scatterer spacing thus permitting at least in principle the
All previous calculations were performed for the mediumresolution of the discreteness of the scatterers. One reason

with N=100 scatterers. Let us now demonstrate the breakNy even a medium comprised of o= 10 scatterers can

down of the Boltzmann equation for media with a smallerP€ described by a theory that is based on a continuous scat-
number of scatterers. We have kept the corresponding mal€ring medium could be the fact that for our parameter re-
roscopic averaged quantities suchagnd W constant and ~ 9iMe the average reerpted and tran§m|tted photons experi-
adjusted the individual scattering strengtas we variedN ~ €NC€ many more than just 10 scattering events.
according tor = wW/( W+ N). We chose the medium with The main result reported in this work is certainly not the
a maximum amount of disorder. final goal of this line of inquiry. The long term goal of our

In Fig. 4 we display the transmission and reflection coef-Stu,dies is t.o find an imPfoved dgscription of the optical prop-
ficients as functions of the modulation frequenefor media  €rties of highly scattering media that goes even beyond the

consisting ofN=5 and 10 scatterers. The continuous curveMacroscopic Boltzmann theory. As mentioned in the intro-
duction, the Boltzmann equation cannot describe diffraction,

interference or refraction of electromagnetic fields, and it

[ S OTS( ©) would be quite desirable to find a new theoretical framework
R(w) | N=10 N=5 104 that avoids all the probably unnecessary microscopic details
0.5 = 1 of the medium but nevertheless can include some wave as-
04l 03 pects of light. So as a first step towards this theory, it is quite

important to clearly identify inaccuracies in a continuous
medium description that are due to the averaging and those
that are intrinsically due to the omission of the coherence
: and general wave nature of the photons. In a related work
T [24] we have begun to investigate the importance of the
0.08 01 phase of the electromagnetic field for heterogeneous random
media by comparing the predictions of the Maxwell equa-

FIG. 4. The transmission and reflection as a function of thetions with that of an intensity theory.
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modulation frequency of the laséin units of c/d) for a medium ~ The present analysis has been performed for a one-
with N=5 andN= 10 scatterers. The continuous line is the predic-dimensional random medium that can be realized experimen-
tion of the Boltzmann equation. tally by a sample of plane-parallel dielectric layers. The
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reader might wonder about the generality of the conclusiormore strongly on the spatial dimensionality for weakly scat-
for those media that do not have a symmetry permitting aering media due to the impact of the polarization. In one-
reduced dimensional description. We should point out thaind two-dimensional systems the polarization direction need
even numerical solutions to the three-dimensional Boltznot change, but in three dimensions this change is unavoid-
mann equation are presently very difficult—if not able. Our future work is directed towards these questions.
impossible—to obtain. However, we would like to remark

that there is no fundamental difference in the physics be-

tween a single scattering event in a one- or three-dimensional ACKNOWLEDGMENTS

description and we would expect that our conclusion about
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In fact one can show that the essential aspects of the scattanutual visits. We also acknowledge discussions with
ing theory such as the partial wave decomposition or eveis. Menon. This work has been supported by the NSF. We
the optical theoremi25] have their direct counterpart in two- also acknowledge support from the Research Corporation
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